
0020-7683(95)00166-2

Pergamon
Int. 1. Solids Structures Vol. 33, No. 17, pp. 2417·2436,1996

Copyright 1996 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

002G-7683/96 $15.00 + .00

ELASTIC POSTBUCKLING WITH NONLINEAR
CONSTRAINTS

ESBEN BYSKOV, CLAUS DENCKER CHRISTENSEN
and KRISTIAN J0RGENSEN

Department of Structural Engineering, Technical University of Denmark, Building 118,
DK-2800 Lyngby, Denmark

(Received 10 May 1995)

Abstract- Koiter's asymptotic theory of initial postbuckling and imperfection sensitivity of elastic
structures is expanded such that almost any auxiliary condition can be handled directly. The theory,
which employs Lagrange multiplier techniques, is valid for strain measures that are quadratic in the
displacements, i.e. it is exact for Lagrangian strain measures, and auxiliary conditions and loadings
that are quartic in their arguments. Although the general formulas are rather lengthy and com­
plicated in the general case they simplify considerably in almost all cases of practical interest.
Frequently the formulas are only slightly more complex than in the equivalent situation without
auxiliary conditions.

The method is applied to the example of an elastic inextensible circular ring but is suitable for
all elastic structures which comply with the above mentioned requirements regarding strain measure
and auxiliary conditions. Copyright ;g; 1996 Elsevier Science Ltd.

1. INTRODUCTION

In order to obtain an accurate structural analysis it is sometimes necessary to impose
constraints such as inextensibility. In other situations, it may be essential to handle numeri­
cal difficulties such as membrane locking. For these purposes several different approaches
have been applied with success, e.g. reduced integration (Noor and Peters, 198 I), (Belytschko
et al., 1985), mixed methods (Noor and Peters, 1981), (Belytschko et al., 1985) and (Stolarski
and Belytschko, 1983), mode decomposition methods (Belytschko et al., 1985), (Stolarski
and Belytschko, 1983) and (Mau and EI-Mabsout, 1989), and Lagrange multiplier techniques
(Byskov,1989b).

Here, we concentrate on asymptotic analysis of postbuckling and imperfection sen­
sitivity in the spirit of Koiter (\ 945), Budiansky and Hutchinson (\ 964), Fitch (\ 968), and
Budiansky (\974) and establish a general method that is capable of handling auxiliary
conditions and load terms which are quartic in their arguments and strain measures which
are quadratic in their arguments. For the purpose of extending Koiter's theory only the
Lagrange multiplier technique seems to constitute a viable alternative. The reason is that
the other approaches mentioned above are particularly well suited for certain special
problems and therefore of a less general nature.

Inextensibility may pose severe problems in actual applications of Koiter's theory, see
e.g. Budiansky (\974) or Sills and Budiansky (1978), where the problem of buckling and
postbuckling of an elastic ring is solved. Except for the study by Sills and Budiansky (1978)
it seems that inextensibility has been handled in various ad hoc fashions, although Budiansky
(1974) very briefly outlines a procedure like ours. Another important issue associated with
numerical postbuckling studies and, more broadly geometrically nonlinear studies, is the
handling of locking, be it membrane, shear, or bending locking in curved or straight finite
elements. For these purposes, our method is very efficient, as will be shown in a later article.

Examples ofauxiliary conditions
For convenience and clarity we give some examples of auxiliary conditions below.
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Inextensibility. For the complete circular ring treated by Sills and Budiansky (1978)
inextensibility is given as:

(1)

where wand v are the nondimensional outward and axial displacement component, respec­
tively, and rx. is the sectorial angle. In most analyses a condition like (1) is difficult to fulfill
explicitly, and indirect means are more feasible.

Locking in general. In conventional nonlinear finite element analyses there is a tendency
to develop nonlinear membrane or bending locking that causes inaccurate values of the
membrane or bending strains and stresses. The reason is that the two terms in the expression
in the strain-displacement relation, see (12a), usually are approximated by polynomials of
different degree:

(2)

Here, £ denotes the generalized strains, u designates the generalized displacements, and !f l

is a linear, and !f2 a quadratic operator, respectively. While the first term in the right hand
side of (2) is likely to vary fairly smoothly, the second is usually characterized by rapid
variations. This means that in most finite element analyses the nonlinear strains are poorly
described by the sum of the two terms. It may, however, be worthwhile noticing that the
two terms are computed at the same time and that the strain energy is given by £, not the
individual terms. Therefore, it seems possible that £ may behave less erratically than the
two terms individually.

Locking in postbuckling studies. For a symmetric structure the postbuckling strain £2 is
given as, see (21b):

(3)

where u, is the prebuckling displacement field computed at the classical critical load,
characterized by the value Ac of the load parameter A, u I is the buckling displacement field,
U2 is the postbuckling displacement field, and !f II is a bilinear operator which is derived
from !f2, see (12a) and (83a).

Since Uj is furnished by the buckling problem and therefore is given before the post­
buckling problem is established, the terms !fj(U2) and !fjl(Un U2) must be able to accom­
modate all possible rapid variations in the term ~!f2 (Uj)' Apparently because of this lack
of freedom, nonlinear membrane locking seems to be even more severe in postbuckling
studies than in other geometrically nonlinear problems.

In earlier studies, see e.g. Byskov (1989b) or Byskov (1989a), the method of Lagrange
multipliers has been applied to postbuckling problems with linear prebuckling, where
membrane locking only occurs in the computation of the postbuckling strains and stresses.
Analyses of structures that exhibit nonlinear prebuckling, e.g. arches with point loads,
necessitates taking membrane locking into account in all steps of the computation. For
such purposes our extension to Koiter's theory proves to be convenient and efficient because
it entails application of the Lagrange multiplier technique from the outset rather than
treating the prebuckling, the buckling, and the postbuckling problems individually.

2. THE PRINCIPLE OF VIRTUAL DISPLACEMENTS WITH CONSTRAINTS

A Modified Principle of Virtual Displacements with nonlinear loading terms and Lag­
range Multiplier terms may be written:
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0"' 6e(u) = A6B(u) +6(1]' C(u))
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(4)

Here, u denotes the displacement field; G is the strain field, 0" its corresponding stress field
given as H(e), where H is a linear operator; 6 designates variation; }" is a scalar load
parameter; B is a (nonlinear) loading functional; C contains the appropriate constraints;
1] is the Lagrange multiplier field corresponding to C; and a dot ('), according to the
Budiansky-Hutchinson notation (Budiansky and Hutchinson, 1964), indicates an inner
product. The assumption of linear (hyper)elasticity implies the reciprocity relation:

(5)

Ultimately, 0" and G in (4) may be expressed in terms of the displacements, which then
constitute the primary unknowns. Occasionally, the Lagrange multiplier field may be
eliminated before the final set of global equations is formulated, which can reduce the
computational expense. Except for notational differences, (4) is equivalent to an unnum­
bered formula in (Budiansky, 1974), p. 30. While Budiansky exploits his formula in two
examples, he does not derive a set of general equations like the ones below.

3. FUNDAMENTAL PATH, BUCKLING AND POSTBUCKLING

Let subscript ° indicate prebuckling quantities, then the fundamental path, given by
uo, 0"0, eo and 1]0' can be found from the modified principle of virtual displacements (4).

We establish the modified principle of virtual displacements (4) on the fundamental
path and the bifurcated path, respectively. Let the load level Abe the same in both variational
equations and let it approach the classical critical value Ac of A. By subtracting the two
principles of virtual work we may then derive variational statements that govern the
buckling mode Ulo A" and the initial postbuckling behavior, see below.

3.1. Perturbation expansion
For }" close to ,.1"., Aand u may be expanded in perturbation series, see e.g. (Budiansky,

1974) or (Hutchinson, 1974):

(6)

and

(7)

where ~ is the perturbation parameter, which we later shall identify as the buckling mode
amplitude.

L..--------+-----r--1------ u
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\ Prebuckling path
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Postbuckling path

Uo U c u

Fig. I. Fundamental and bifurcated paths.
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The fields (5, /; and Yj, which we for brevity and convenience collectively denote p, may
be expanded as :

(8)

with the variation [)p expanded in a similar fashion:

(9)

Note that [)Pi is defined as the field which is the coefficient to ¢i in the expansion of [)p and
that [)Pi may not be computed as a variation ofp;.

The fields P are either quartic in u or expanded to fourth order in u in order to insure
that the theory is able to handle problems with a high degree of nonlinearity:

(10)

Rules for the operators f!J i are given in Appendix A and provide:

To be specific, for £, B, and C the expansion (10) is interpreted as:

/;(u) = 21(U)+~22(U)

B(u) = J6'1(U)+~J6'2(U)+~36'3(U)+~J6'4(U)

C(u) = ~1(U)+~~2(U)+~~3(U)+~~4(U)

(II)

(12)

where it is noted that Lagrange strains are quadratic in the displacements and are therefore
represented exactly by our theory.

3.2. Taylor expansion
In order to investigate the prebuckling path close to the bifurcation point we expand

all fields in Ie :

Here, Po(}') denotes any field on the prebuckling path, and a prime indicates differentiation
with respect to Ie :

(14)

and subscript c indicates that the value of the quantity is taken at Ie = ).e- It may be
worthwhile noticing that, although ¢ is a quantity that is defined on the postbuckling path,
it is also used as a perturbation parameter on the prebuckling path. This, however, does not
entail any inconsistencies in that the introduction of ¢ on the prebuckling path simply may
be viewed as a change of variables.

Insert Ie given as (6) into (8), utilize the expansion (13), and gather terms with ¢ of the
same order to obtain the following expressions:

(15)

and similarly



and

Elastic postbuckling 2421

(16)

(17)

Here, upper index * is introduced to differentiate from the previous expansions, e.g. (7)
and (8), and the fields P~ <5p~ and u~ i E [1, 3], are independent of J. and ~. The expressions
for p~ <5p~ and u~ which follow from (6)-(9), (13) and (15)-(17), are:

* _ } '+ b}2 "+ 1 3·3 "'+P3 - C 'cPc a 'ePc "6 a !cePe P3

<5p! = bAJ)p;+~a2J.~<5p;~+<5P2

<5pt = cAe<5p;. + abA~ <5p; + ~a3 A; <5p;~' + <5P3

and

In Appendix B it is shown that PI> P2 and P3 may be written:

PI = 91(UI)+911(UI,UJ+912(Uj,uJ+913(UI,UJ

P2 = + a}.e[9 11 (u;., UI) + 2SO lli (un u;., Ul) + 39112 (u;, UI, uJ]

+SOI (U2) +~92 (ud + 9 11 (Un U2) +912 (Un UI)

+SO 12 (U2' Uc)+~922(Un UI) +9 13 (U2' Ue)

P3 = +aAA+911 (u;., u2)+29 111 (Un U;, U2) +912 (U;, ud

+391du;, U2' Uc) +391 dUn u;., UI)]

+bAc[91I (u;, UI) +29 111 (Un u;, U1 ) +3S0 112 (u;, UI, uJ]

+~(aAJ2[+SOII (u;:, ud +29111 (Un U;~, ul)+29dul, u;.)

+91(U3) +911 (UI' U2) +9 11 (Un U3) +29111 (Un Uj, U2)

+912 (U3' UJ+~93(UI)+3SOI12(UI' U2, Uc )

(18)

(19)

(20)

(21 )
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In Appendix C it is shown that lJp" lJp2 and lJp3 may be written:

lJpl = 8P II (lJu, uI) + 28P 111 (lJu, Un ud + 38P112 (lJu, u], ue)

lJp2 = +aAJ28P 111 (lJu, u;, ul)+68PIIIl (lJu, Un u;, Ul)]

+8P 11 (lJu, U2) +8P 12 (lJu, UI) + 28P 111 (lJu, Un U2) + 38P 112 (lJU, Un Ul)

+38P 112 (lJU, U2, u,)

lJp3 = +aA,[28P II1 (lJu, u;., U2) +68P I111 (lJu, Un u;, u2)+38P1dlJu, u;, U1)]

+ 8P II (lJu, U3) + 281'111 (lJu, UI, U2) + 28P 111 (lJu, Un U3)

+681'1111 (lJu, Un U], u2)+38P 112 (lJU, U3, u,)+8P 13 (lJu, u1 ) (22)

3.3 Principle ofvirtual displacements in asymptotic form
The terms in the principle of virtual displacements (4) are introduced by their asymp­

totic expansions (15)-(20) :

(0', + ~O'j+~2a~+ ~3ar+ O(~4)). (&e + ~&j+ ~2&~+ ~3&j+ O(~4))

= (1 + ~a+ ~2b + ~3 c+ O(~4))Ae(lJB(+ ~lJBj+ ~2lJB~+ ClJBj+ O(~4))

+ (C, + ~ct + ~2C~+ ~3 Cj+ O(~4)) 'lJy/

+ (y/, + ~y/j+ ~2y/~+ Cy/j)' (lJCe+ ~lJct+ ~2lJC~+ ClJCj + O(~4)) (23)

Since the asymptotic expansion is assumed to be valid for any (small) value of ~ we may
collect terms of like order in ~ and establish variational equations for the eigenvalue problem
and the boundary value problems of increasing order in~. In this way we get the variational
eqns (24)-(27) below.

Zeroth order problem at bifurcation.

(24)

which, of course, is nothing else than the principle of virtual displacements (4) on the
prebuckling path at bifurcation.

First order problem. The first order problem, i.e. the eigenvalue problem is:

Second order problem. This problem, which sometimes is also referred to as the first
postbuckling problem is:

Third order problem. This is occasionally denoted the second postbuckling problem:
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The postbuckling constants a, band c are later eliminated from (25), (26) and (27),
respectively.

In order to determine a we need (26), and to compute b the expression (27) is a
prerequisite, but we shall not carry the expansions to third order except to the extent which
is necessary to compute b by use of (27), and thus (27) is of temporary value only.

4. PREBUCKLING

The boundary value problem for the fundamental path is obtained by inserting (10)
and (11) in (4) and noting that U = Uo in prebuckling:

H[5£ 1(uo) +~g 2 (uo)] , [g I (c5u) + gIl (c5u, uo)]

= A[&8 I (c5u) +&8 11 (c5u, uo) +&8 12 (bu, uo)+&8 13 (c5u, uo)]

+ c5'1' [~\ (uo) +~~2(uo)+~~3(uo)+~~4(uo)]

+ '10 ' [~1 (c5u) + ~ 11 (c5u, uo) + '?l12 (c5u, uo) + ~13 (c5u, uo)]

5. BUCKLING

(28)

Insert (18) and (19) in the buckling problem (25) and utilize the first derivative of the
modified principle of virtual displacements at bifurcation (102) to eliminate all terms
containing the unknown first order postbuckling constant a and get an eigenvalue problem
to determine A, and U 1 :

(29)

When the operator expansions (21) and (22) are exploited (29) yields:

(30)

with the functional 6' II (u h c5u) defined by :

gll(U),bu) = -O'c'5£II(c5u,Ul)

- H[g I (Ul) + 5£ 11 (Un u1 )] , [5£ 1(c5u) + 5£ 11 (bu, uc)]

+'1c' [~11 (c5u, ul)+2~111 (c5u, Un ul)+3~1dc5u, UI, U,)]

+'11 ' [~1 (c5u) +~11 (c5u, u,) +~dc5u, u,.) +~13(c5u, U,)]

+15'1' [~1 (U 1) +'f1 11 (Ulo UJ + 'f1 12 (Ulo Uc) +~ 13 (U 1, UJ]

+/.,[3911 (c5u, u,)+239 111 (c5u, Un u1)+3&81dc5u, UI, uc)] (31)

By use of the reciprocity relation (5) it is observed that 0"11 is symmetric:

0" 11 (u, v) = 0" 11 (v, u) Vkinematically admissible (u, v)

Note that a does not enter (30) and that Ul only enters linearly, as expected.

(32)

6. POSTBUCKLING

In order to carry out a second order analysis, i.e. an analysis up to ~2, see (6), we derive
variational equations for the first and second postbuckling problems which determine U2
and U3, respectively. Although we do not intend to compute U3, as mentioned above, it
proves necessary to establish the second postbuckling problem, which might be used to find
u 3 , in order to determine the postbuckling constant b.
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6.1. First postbuckling problem
In order to determine the first order postbuckling constant a we exploit the first

postbuckling problem (26) and utilize the the first and second derivatives of the modified
principle of virtual displacements, (l02) and (103), respectively, to eliminate the second
order postbuckling constant b:

0= aJ.c[-bBI-1l;·bCI-1]1 'bC;+u;'bcl +u I • be;.]

- [AcbB2 + Cz . 151] + I]c . bCz+1]z' bCe +111' bCI -Ue ' bez -Uz . bee-UI . bel] (33)

which contains the unknown postbuckling field Uz as well as a. After introduction ofPi and
bPi given by (21) and (22), respectively, we collect terms that contain Uz on the left hand
side and get:

(34)

which may be solved for U 2 when a is known, see (39) below, <&"11 is given by (31), and the
right hand side functionals are defined by:

g;:-l (bu) = -AA~lz(bu, Ul)+3~llZ(bu, Un UI)]

-151]' [~~z (ud +~IZ (Un UI) +~~22 (Un Ul)]

-I]e' [~lZ (bu, UI) + 3(6'IIZ (bu, Un UI)]

-I] I . [~II (bu, UI) + 2~'11 (bu, Un UI) + 3~ lIZ (bu, UI, Ue)]

+ H[~~Z(U I )]· [~I (bu) + ~Il (bu, UJ] +U I . ~II (bu, Ul) (35)

and

g;:-i(bu) = +U;.· ~ 11 (bu, ud +UI •~ll (bu, U;) +H[~II (U;., UI)]' [~I (bu) + ~ll (bu, UJ]

- [~II (bu, Ul ) +2~111 (bu, Un UI) + 3~llz(bu, UI, UJ]

-1];' [~Il (bu, Ul) + 2~111 (bu, Ue , UI) + 3~IIZ (bu, U], U,)]

-I]e' [2~lll (bu, U;, UI) +6~1111 (bu, Un U;, Ul)]

-1]1 . [~ll (bu, U;) +2~lll (bu, Un u;)+3~llz(bu, U;, U,)]

-151]' [~ll (U l , U;) +2~111 (Ul, Un U;.) + 3~IIZ(UI' U;, UJ]

(36)

To obtain an expression for a, the buckling problem (30) with bu = Uz is subtracted from
the first postbuckling problem (34) with bu = Ul . With bu = Uz the buckling problem (30)
yields:

(37)

The first postbuckling problem (34) with bu = Ul provides:

(38)

When we subtract (37) from (38) and utilize the reciprocity relation (32) we may get
the expression (39) for the determination of a:
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(39)

Since the second order field U2 does not enter, eqn (39) can be used to find the first order
postbuckling constant a.

6.2. Second postbuckling problem
Analogous to the procedure utilized in Section 6.1 we use the first, second and third

derivatives of the principle of virtual displacements (l02), (l03) and (l 04), respectively, to
eliminate all terms containing the third order postbuckling constant c from the second
postbuckling problem (27) to get a formula for the second order postbuckling constant b:

o= +bJ.c[-bBI-'1~·bCI-'11 ·bC;.+O";.·bcI +0"1 .&;.]

l( ")J[" "C "C""" \:'1-;; ale, - '1c'u 1+'1I'U e-O"c'uEI-O"I 'uc,

-aAc [bB2+ '1;. bC2+ '12' bC; - 0";' &2 - 0"2' b(]

-A,bB3 - C3 . b'1-'1e' bC3 -'13' bC, -'11 . bC2

-'12 'bC I +0",'&3+0"3 '&,+0"2 'bcI +0"1 '&2 (40)

which entails the unknown postbuckling field U3 as well as b. A procedure analogous to the
one employed in Section 6.1 will show that (40) may be written:

Since we do not intend to establish and solve the third order problem (41) we do not
determine the expressions for 'lJil (bu). To obtain an expression for the second order post­
buckling constant b, the buckling problem (30) with bu = U 3 is subtracted from (41) with
bU = UI'

The buckling problem (29) with bu = U3 is:

(42)

and the third order problem (41) with bu = Ul is:

After subtraction of (42) from (43) the expression for M'e is easily found to be :

'lJ: (UI) + aA,'lJi(ud + ~(aAJ2'lJf (UI)
bAc = - ---------=-------

~T(uI)
(44)

In order to determine expressions for 'lJ\ we insert the operator expansions (21) and (22)
into (40) and compare with (41) with the result that:

'lJl(ud = -Ac [288 12 (u2' u j )+688 112 (U" U2, ud +884(UI)]

-'1e' [2~du2'ul)+6~112(U"U2, UI) +~4(ud]

- '11 . [2~ II (u], U2) + 4~ III (u" u], U2) + ~~3(u I)

+6~112(UI' U2, Uc)+4~13(Uco UI)] -'12' [~2(UI +2~12(U"ud+3~22(U"UI)]

(45)
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~T(U,) = -86II(UI.U2)+863(U1)+286III(UI,UnU2)

- 386 13 (un UI) + 386112 (uI. U2, U,.)

- AJ286 III (u I, u;, U2) + 386 13 (U;, UI) + 686 1111 (u I, U2, Un U;)]

- '7; . ['?? II (u I, U2) + CC3(U I ) + 2CC II I(U I, Un U2) + 3'?? 13 (Un UI) + 3'?? 112 (U I, U2, Ue )]

- '7e • [2'?? III (U I, U;., U2) + 3'?? 13 (U;, UI) + 6'?? II II (U I, U2, Un U;)]

- '71 • [CC II (U;., U2) + 3'?? 12 (U;, UI) + 2'?? III (U;, Un U2)

+ 3CC 112 (U;, U2, U,.) +9'??112 (Un U;, UI )]

- '72' ['?? 11 (UI. U;) + 2'?? III (Un U;, UI ) + 3CC112 (U I , U;, UJ]

+0';'2"II(UI,U2)+0'2 '2"II(UI.U;)+O'I '2"II(U2,U;)

~i (ud = - 286 12 (U;, UI) + 686 112 (Un u;., UI)

- AA286 12 (u;:, UI ) + 68622 (u;, UI) + 686 112 (Un u;:, UI )]

-'7;:' ['??2(UI) +2CCdun UI) + 3CC22 (Un UI)]

-'7;. [2'??du;., uI)+6'??112(Un U;, UI)]

- '7e . [2'?? 12 (U~, UI) + 6'??22 (U;, ud + 6'?? 112 (Un U;:, UI)]

- '71 . [2CC I1 (U~, UI) +4'?? 12 (UI, U;) +4'??111 (U~, Un UI)

+ 12CC 112 (Un UI, UJ + 6'?? 112 (U~, UI, UJ] + O'~' 2"2(UI) + 20' I . 2" II (UI' U;')

and the denominator ~T(UI) is given by (36).

(46)

(47)

6.3. The orthogonality condition
The left hand side of (34) is identical to the eigenvalue problem (30) and is therefore­

singular. In general, the complete solution (34) contains parts of the u,-field and takes the
form:

(48)

where u~artie is a particular solution to (34) and k 2 is an arbitrary constant. To determine
k2, and through that U2, an orthogonality condition between the buckling field and the
higher order fields, i.e. U2, U3, ... , is introduced. As regards the orthogonality condition,
which in the following is given by the bilinear operator Q II, the conditions below must
apply, see e.g. Budiansky (1974) or Fitch (1968):

(49)

The amount of participation of the buckling mode UI in an arbitrary displacement field is
then given as :

where

( = QII (u-uo, UI)
QII(UI,UI)

(50)

(51 )

In the general case, the postbuckling coefficient b, which depends on U2, will depend on the
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orthogonality condition (49) imposed on Uz. Such an ambiguity in the determination of b
apparently implies that the predictions of postbuckling behavior by means of b becomes
inconsistent. However, the orthogonality condition is closely connected to the definition of
the perturbation parameter ~, see (50), and this fact is therefore important to bear in mind
when the results of a postbuckling analysis are inspected in that the physical interpretation
of the buckling mode amplitude ~ depends on the choice of QI"

6.3.1. Symmetric case: a = O. The denominator of b is independent of uz, while its
numerator b~~o is given by:

(52)

Let '!Jpa,ti' denote '!Jl (u 1) with Ilia'tic substituted for Uz and insert (48) in (52) to get:

b~~o = - '!Jpartic +2kz[AJ26'3 (UI) + 326'dUn udl +1], • [~CCz(u,) + 3CCduo u,) +~CC22 (Un u,)l

+1],' [CC 3(Uj)+3CC'3(Un UI)] -~O"I • 2'z(U,)] (53)

which, in view of (39), can be written:

(54)

When the numerator'?: (u,) of a vanishes (54) is reduced to:

(55)

which is independent of k z. Thus for a = 0, the second order postbuckling constant b is
independent of the choice of orthogonality condition. When a = 0 the sole purposes of
imposing an orthogonality condition are to render the left hand side of (34) non-singular
and to fix Uz such that it does not contain any contribution of the buckling mode uI'

6.3.2. General case: a =1= O. For a =1= 0 the value of the second order postbuckling
constant b may be written:

(56)

which depends on k z. Clearly, in this case the value of b hinges on the choice oforthogonality
condition.

6.3.3. Choice oforthogonality condition. Obviously, there are several meaningful choices
of orthogonality condition. The one which seems the most natural to impose on the second
order field Uz is :

(57)

because it is identical to the most commonly used orthogonality condition when the
prebuckling path is linear. It may be observed that for the case of nonlinear prebuckling
the condition depends on the prebuckling field at buckling, which is meaningful because
the asymptotic expansion is performed at (I.", uJ.

7. QUADRATIC LOADING AND AUXILIARY CONDITIONS

In this section we present the above developed formulas for a common case, namely
one which entails loading terms and auxiliary conditions that are quadratic, not quartic, in
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the displacements. These assumptions reduce the enormity of the previously derived for­
mulas considerably. Moreover, if the first order postbuckling constant a does not vanish,
there is usually no reason to go beyond further and solve the first postbuckling problem in
order to determine the second order postbuckling constant b.

7.1. Prebuckling
Here, (28) becomes:

H[02:\ (uo) +~2' 2(uo)] . [2' I (bu) + 2' II (bu, uo)] = J.[iJ? I (bu) + iJ? II (bu, uo)]

+ 151]' [~I (uo) +~~2(uo)] + 1]0 . [~I (bu) +~ II (bu, uo)] (58)

7.2. Buckling
The variational eqn (30) governing buckling simplifies to :

o= - AciJ? II (bu, UI) - 151]' [~I (ud + ~ II (u" uJ] -1]c .~ II (bu, ud

-1]1 . [~I (bu) + 'til I (bu, uJ] +O"c' 2'11 (bu, UI)

+ H[2' I (ud + 2'11 (UI, uJ] . [2' I (bu) + 2'II (bu, uc)]

and the expression (39) giving the first order postbuckling constant a is :

A _ ~ 1]1 ·'ti2(UI)-0"1 •2'2(UI)
a ( - 2 0"; . 2'2(u I ) + 20" I •2' I I (u I , u;) - iJ?2(u I ) -1]; . 'ti2(u I ) - 21] I . 'ti I I (u" u;)

(59)

(60)

7.3. Postbuckling ofsymmetric structures: a = 0
When the first order postbuckling constant a vanishes the first order postbuckling

problem (34) reduces to :

-AciJ?11 (bu, U2) -151]' [~I (U2) +~II (un U2)] -1],' 'till (bu, U2)

-1]2 . ['ti I (bu) + 'ti I I (bu, UJ] + 0", . 2' II (bu, U2)

+ [2' I (bu) + 2' II (bu, UJ] •H[2' I (U2) + 2'11 (Un U2)]

= 151] . ~'ti2(U I) + 1] I . 'ti II (bu, uI) - 0" I . 2' I I (bu, uI)

- [2' I (bu) + 2' II (bu, UJ]' H[~2'2(UI)]

and the expression (44) for the second order postbuckling constant b is:

bA. = 21]1 ·'ti II (UI,U2)+1]2 ·'ti2(ud-20"1 '2'II(UI,U2)-0"2 '2'2(ud
( 0";' 2'2 (UI) + 20"1 •2' II (UI, u;) -iJ?2 (UI) -1];.' ~2 (UI) - 21]1 • 'till (u" u;)

(61)

(62)

8. EXAMPLE: THE COMPLETE RING-FULL NONLINEAR THEORY

As an example of an application of our theory we present the complete ring under
hydrostatic load, see Fig. 2. The behavior of this structure has been investigated by, among
others, Sills and Budiansky (1978) and Budiansky (1974). In both these references, the
analysis was based on a formulation in terms of the potential energy of the system, while
our analysis takes the modified principle of virtual displacements as its point of departure.
Among the assumptions in (Sills and Budiansky, 1978) and (Budiansky, 1974) are inex­
tensionality, which they enforce through application of Lagrange multipliers in much the
same way that we do it below, the main difference being that in our analysis we utilize the
general formulas derived above.
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Fig. 2. The complete ring.

The load parameter A. is given by :
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(63)

where ij is the applied hydrostatic pressure, R is the radius of the ring, and £1 is its bending
stiffeness.

Although the beam theory is fully nonlinear the second order operator 5E2 of the
strain-displacement relation vanishes in that:

(64)

where the bending strain K is the only nonvanishing strain component, 8 is the rotation of
the beam axis, and a is the sectorial angle. In addition to 8 the displacement field u contains
the nondimensional axial displacement component v and the nondimensional transverse
displacement component w, which are equal to the physical quantities divided by R.

8.1. Virtual work
Here, the auxiliary conditions describe inextensibility and the connection between 8

and v, w, respectively. Thus, the operator C of (4) is:

[

dv 1 (( dV)2 (dW )2)W+ dct + :2 W+ da + dct - v
qu) =

dw
sin (8) + - - vdct

When we expand C to order 4, the following expressions are found:

=0 (65)

see (l2c).

[

dV]W+~

da

dw
8+ dct -v

[(
dV)2 (dW )2]W+~ + --v 0

~,(u) ~ do 0 da ~ ,(u) ~ [ -40' ] (66)
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The load potential B(u) for hydrostatic loading is, see e.g. (Sills and Budiansky, 1978):

i
2n (dW ) i2n ( 1 (dW)2 I ( dW)2)B(u) = - w-V-+~W2+~V2 dIX= - w-- - +~W2+- v-- dIX
o dIX 2 2 0 2 dIX 2 2 dIX

(67)

and thus:

r2n

28) (u) = - Jo wdIX

r2n ((dW)2 (dW)2)gg 2 (u) = J0 de( - w
2

- V - dIX dIX

8.2. Prebuckling
Utilize (28) to get:

r2n

( dv 1 (( dV)2 (dW )2))+ Jo (j11
1 Wo + d: +"2 Wo + d: + dIX

o-vo de(

Here:

(68)

(69)

(70)

where 11 1 and 112 are associated with the condition of inextensibility and with the connection
between rotation and displacements, respectively, see (65) and (66).

It is easily seen that the solution to (69) is:

8.3. Buckling
Equation (30) provides:

I 0

110 = J. (70)
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Excluding rigid body displacements the solution to (72) is :

WI = cos (2iX) Vj = -~sin (2iX) (Jj = ~sin (2iX) 11: = 3 cos (2iX) I1T = 6 sin (2iX)
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(72)

(73)

where the buckling mode is normalized such that the amplitude of the transverse dis­
placement component is 1, and the classical critical load is given by:

Ac = 3 (74)

8.4. Postbuckling
It is easily verified that the ring must exhibit a symmetric postbuckling behavior. Thus,

the first order postbuckling constant a vanishes:

a=O (75)

Therefore, we need the postbuckling field U2 in order to determine the second order
postbuckling constant b. For a = 0 the first postbuckling problem given by (34) may
provide the following variational equation for U2 :

(2" (2n
= + Jo ~(l-COS(4iX))bI11 diX+ Jo (~sin(4iX)bV+9cos(4iX)bW)dC( (76)

When the orthogonality condition (49b) and the condition of periodicity are exploited, and
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all rigid body terms are eliminated, we get the following solution to (76) :

9

16
V2 = ~sin (4a) fJ 2 = ~sin (4a) 11~ = -Hcos (4a) (77)

Finally, after some computations, (62) yields:

b ' 81
lI.e = 32 (78)

8.5. Comments
If we had retained only one term in the expansion for sin (fJ) in (65), which has been

done by e.g. Rehfield (1972), the prediction for the buckling load would remain the same,
but the prediction of the postbuckling behavior would be in error in that the value of bAe
would be - ~ instead of +H, which is due to Sills and Budiansky (1978). On the other
hand, it is possible to show that the value of bAc is unaltered whether or not higher order
terms in sin (fJ) are included.

We have utilized the ring example to show the application of the-admittedly rather
lengthy formulas of our theory-and to corroborate the finding of Sills and Budiansky
(1978) that it may be important to choose a bending strain measure which is more accurate
than the usual linear.

9. CONCLUSION

A set of equations for prebuckling, buckling and postbuckling of structures, which
exhibit strong nonlinear behavior and are subjected to nonlinear loads as well as nonlinear
auxiliary conditions are derived in the main body of this paper. Although the full formulas
are rather lengthy, in most applications they simplify considerably. The main advantage of
the theory lies in the fact that it encompasses most relevant cases, and therefore major
efforts in deriving formulas for more specialized cases can be avoided.

The finding of Sills and Budiansky (1978) that in order to describe postbuckling
behavior, in particular of symmetric structures such as the complete ring, it is important to
retain load terms of high order is corroborated by the present analysis.
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Operator rules
In the following we introduce a number of operators 9 N(U), N E {I, 2, 3, 4}, and give rules for differentiation

etc. The general operator of degree 4 is written ,o/'ijkl(U", Un' U" Ud), where i,), k, IE {O, 1,2,3, 4} denotes the order of
U", Un' u,. or Ud, respectively. The sum i +j+ k + I ,,; 4 denotes the order of the operator. If an index, e.g. I, is equal
to zero that index may be left out and the operator can be written as an operator of a lower degree. As an example:

(79)

Among the other operators of degree 3 are 9 ,2 (U", un) and 9,(ual.
In the following, indices that are equal to 0 are ignored.

A.i. Symmetry properties. For any two indices, e.g. i and), of an operator the following symmetry properties
apply:

(80)

where the other indices have been left out. As an example of an operator of degree 4 :

(81)

A.2. Multiplication by scalars. For scalars, e.g. sand t the rules for multiplication are:

A.3. Addition. The operators obey the following rules for addition:

9 2 (u" + un) = 92(uul+2911(Ua,un)+9,(un)

9, (uu + un) = 9, (uu ) + 39' 12 (u", Un) + 39 12 (un, Uu ) + 9'3 (Un)

9 4(U" + un) = .'JI'4 (uul +49' 13 (uu, Un) + 69" (uu, un) +49 13 (un, uu) +.'JI'4 (Un)

A.4 Differentiation. Differentiation is performed according to the rules below:

(82)

(83)

f?J;;k/(U", Uh, Un Ud) = + i,qp l(i- ll,ikI(U;n UtI, Uh, Un Ud) +jf?JJ 1iU - l)kl(U~, Ua, Uh, Un Ud) +k:!J> lij(k-l)'(U;" Ua, Uh, Un Ud)

+l.o/'l'iW_I)(U;" uu ' Un' U,., Ud) (84)

Observe that at least one of the 5 indices in each term must vanish, as the sum of the indices does not exceed 4.

APPENDIX B

Perturbation constants, p,., PI' P2 and P,
To determine Ph P, and P3 in the perturbation expansion for P, see (8), the expression for Unear the point of

bifurcation (17) is inserted into (10). This provides the following expressions (85)-(88) :

+ ~3 [cJc,:3i' I (u;.) +abA; 9 1(u~) +~(aA,)'9 1(u;.") + 9 1(u,)] + O(e) (85)

~92 (u) = ~92(UJ + ~[aA,9'11 (u,., U;)+.'JI'II (u" uI)]

+¢' H(ai,,)' 9, (u;) +aA,9 11 (u;. UI) +~g>2 (UI)

+ bA.,.9' II (U,., U;) +~(ai,,)20/'Il (U,., u~) +911 (u,., u2)]

+C[abA,',o/', (u;) +~(aA,)3 9 11 (u;. u;') +aA,.9' II (u;., u,)

+bi,,9 11 (u;.• U,) +~(ai,Y9'1 (u;', ud +,0/'11 (UI' u2)

+ d"o/'II (u,.• u;) + abA; 9'11 (u" u;') +;cai.J39 '1 (un u;") + 9' II (Un U3)]

(86)

j93(u) = j.'Jl'3(U,) + ~[ai".'!i' 12 (U;. U,.) + 9 1, (U I, UJ]

+ ¢' [(aAJ' .'JI'du,. u;) +2aA"o/"ll (Un u;, UI) +9I,(u,., U,)

+bi.,.'JI'du;, U,) +~(aAY9'du;:, U,) +9du,. u,)]

+ ~3 [2abA;,o/' 12 (U,. u;.)+ (aA,)'.o/' III (u,. u;., u~)

+ 2ai.,.!?i' I I I (U'" u;, u,)+2bi'c 9'111 (u'" u;, u , )
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+ (aAJ' 91'111 (un U;'. UI) + 291' III (Un UI, U,) + cA,.8i' 12(U;, U,) +abA; 91' 12 (U;, U,)

+~(a;.y 91'12 (U;', U,.) +8i'du" UJ +~(aA,)3iii'3 (U;) +~iii'] (U I)

+ (aAJ' 91' 12 (U I, U;) + aA,.iii' 12 (U;., ud] + O(~4)

~iii' 4 (U) = ~@' 4 (U,)+ ~[a}.,.9'1J(U;, U,)+iii'13 (U" U,.)]

+ ([~(aA,)2iii'du,., U;) + 3aA,.iii' Idu;, UI, UJ +~8i'du" UI)

+ bA,.iii'1J(U;., U,.) +~(aA,)2iii'IJ(U;', UJ + iii'1J (U" U,.)]

+~] [3abA;.9'22 (U;, u,)+~(a;.J3 .9'112 (U;., U;, U,)

+ 3ai",@"',(U;" u" U,) + 3bi".iii' II' (U;., UI' U,)

+~(ai.J' iii' 112 (U;', UI, U,) + 3iii', du
"

u" U,.) + cA,.9' I] (U;., U,.) + abA;8i'13 (U;:, U,.)

+~(a;.J3 iii'13 (Ui", U,) +8i'13 (U], U,.) + (aA,.)] 8i' IJ (Up U;) + iii'1J (Un ud

(87)

(88)

By comparing terms with ~ of the same order in the Taylor expansion of p from (15), the operator expansion of
P (85)-(88) and the fundamental assumptions (8)-( I0) the following expressions for PI' P2 and P, are obtained:

PI = -aA,p; + aA,[.9' I(u;.) +iii'11 (u,., u;.) +iii'du;., uJ +.9'IJ(u;., u,.)]

+.9'1 (u I) +8i'11 (u I, u,.) +iii'12(U I, U,.) +iii'l ](u I, U,.)

P2 = -b).,p; -~a'{'p;' +aA,[.9'11 (u;., ud + 2.9'111 (u,., u;, UI) + 38i', du;, UI, u,.)]

+ bA,. [iii' I(u;) +iii'11 (u,., u;.) + iii'12 (u;., U,.) +.9'13(U;, u,)]

+~(aA,)2 [ + iii' I(U;)+8i'11 (u,., u;') + iii', (u;) + 2iii' du,., u;.)

+·9'12 (u;', U,.) + 38i'du.., u;.) + iii'13 (u;', uJ]

+ iii'l (U2) +~iii'2 (ud + iii' II (u,., U2) + .9'12 (u,., ud

+.9'12 (U2, u,.) +~8i'22 (Up ud + iii' 13 (U2, u,.)
and

+ aA,.[ +.9' II (u;., u,) + 29" III (up u;., U2) + iii' I' (u;, UI)

+ 38i', dU;, U2, u,.) +3iii"12 (u" u;, ul)]

+bA,·[9"11 (u;., ul) +2iii'", (u,., u;, ud + 38i', du;., ul, u,.)]

+ CA,·[iii'1 (u;) +iii'11 (up u;) +8i'du;, u,.) + iii' I] (u;., u,)]

+~(dJ2 [+iii'11 (u;:, uJl + 28i'", (u,., u;, uJl + 2.9'du
"

u;.)

+ 38i' 112 (u;:, UI, u,.) + 6.9'1 du" UI, u;.)]

+ aM; [+.9'1 (u;') +:?I', (u;) +8i' II (u.., u;) + 2iii' 12 (u,., u;.)

+ 9" 12 (u;', u,) + 39"22 (u;., u,.) +.9'13 (u;:, u,.)]

+~(aJ.,)' [ + iii'l (u;") + 38i' II (u;., u;') +.9' II (Up u;:')

+ 68i' III (Un U;, U;:) +iii'I' (U;", u,.) + 2.9'3(U;.)

+ 98i' 112 (U;., U;:, U,.) + iii' I] (U;", U,) + 6.9'1J (U" U;)]

+iii'l (U3) +iii'11 (U l, U2) +iii'11 (Un U3) +2.9'111 (u,., UI, u,)

+.9' 12 (U3, u,.) +~.9'3 (u l) + 3iii' 112 (u l, U2, uJ +8i' 13 (u], u,.) +.9' lJ (u.., ul)

When we observe that:

p,. = iii'1(U,)+~.9'2(U,.)+~.'iI'3(U,.)+~.9'4(U,.)

P; = iii'l (u;) +.9'11 (U"U;·)+iii'12(U;, U,)+.9'13(U;,U,.)

P;' = iii'l (u;)+8i' II (u" u;')+ 9"2 (u;)+ 2.9'du" u;)

+ iii' 12 (u~, u,.) + 3iii'22 (u" u;) + 8i' 13 (u;', u,.)

P;" = 91' I(u;")+ 3.9' II (u;, u;') +.9' II (u,., u;:')

+ 6iii' III (u" u;., u;') + 9" 12 (U;', U,) + 2.9'3 (u;.)

+99"'12(U;., u;', u,.) +.9'13 (U;:', uJ +6iii'du" u;.)

the expressions for P" P2 and p, may be reduced to (21).

(89)

(90)

(91 )

(92)
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The perturbation constants bp,., bPI, bp" and bp3
The variations bPI, bp, and bp, are determined in the same fashion as formulas for Pi were derived in Appendix

B. The expression for u, see (17), is introduced in (II), which furnishes the identity;

and

and

.'!i'l (bu) = £9'1 (bu)

2l'11 (bu, u) = 2l'11 (bu, uJ + ~[aA,.£9' II (bu, u;) +Y' II (bu, UI)]

+ nbi.,.'!i' II (bu, uJ +~(aA,)'2l' II (bu, u;:) +.'!i' II (bu, u,)]

+ ~3 [d,Y' II (bu, uJ + abi.; £9' II (bu, u~)

+i(aA,Y 2l'11 (bu, u;") +2l'11 (bu, u,)] + OW)

+~' [(aAY.'!i' I' (bu, uJ + 2ai.,2l' III (bu, u;, UI) + Y' 12 (bu, UI)

+ 2M,..'!i' III (bu, u,., u;) + (aAYY' III (bu, u,., u;1 + 2£9' III (bu, Un u,)]

+ ~3[2ab).;.'!i'12(bu, u;.) + (aA,)3.'!i'111 (bu, u;, u;')

+ 2ai.,2l' III (bu, u;, u,) + 2bA,Y' I \ I (bu, u;, ul )

+ (aA,Y'!i' I I I (bu, u;:, ud +2Y'" \ (bu, UI, u,)

+ ~2 [3 (aA,)' Y'112 (bu, u" u;) + 6aA,Y' IIII (bu, u,., u;, ud

+ 32l'II,(bu, Un ul ) + 3bA,..'!i' I I' (bu, u;, uJ

+ %(a).y 2l'1 nCbu, u;:, uJ +3£9'1 dbu, U2, u,)]

+~'[6abA;.'!i'1 nCbu, u,., u;) + 3(aA.)'£9'1111 (bu, u,., u;, u;1

+ 6aA,.Y' II1I (bu, U" u;., u,) + 6bA,2l' II \ I (bu, u,., u;, ud

+ 3(ai.,)'2l', \ II (bu, u,., u;:, ud +62l'1111 (bu, u,., u l , u,)

+ 3d,.'!i' InCbu, u;, u.) + 3abA~ [J}J II' (bu, u;:, uJ

+~(aAJ3.'!i'\dbu, u~', u,.) +3Y'", (bu, U3, u,) + (aAYY'1 ,(bu, u;) +2l'1 3(bu, Ul)

+ 3(aAY·'!i'II,(bu, UI, UJ + 3aA, £9'1 \ ,(bu, U;, UI)] + O(~4)

(93)

(94)

(95)

(96)

Analogous to the procedure in Appendix B comparison of terms of like order in ~ in the Taylor expansions
provide the following formulas;

bpI = -ai.,.bp;. + aA,.[£9' I I (bu, u;.) +2.'!i'111 (bu, u,., u;.) +32l'112(bu, u;, ucl]

+.'!i'11 (bu, UI) + 22l'", (ou, u,., ul ) +32l'II,(bu, UI, u,.)

bp, = -b).,op; _~a2 )';bp;' + aA,[2Y' II \ (ou, u;, UI) + 6Y', \ II (ou, u,., u;, UI)]

+ bA,.[£9' II (bu, u;.) + 22l' III (bu, u,., uJ + 3£9' 112 (bu, u;., u,.)]

+~(aAY [.'!i' II (bu, u:1 + 2£9'\ 2 (bu, u;) + 22l' II \ (bu, u" u;:)

+62l' I 12 (bu, u" u;.) +3.'!i'I12(OU, u;', u.)]

+.'!i'11 (ou, u,) +.'!i' 12(OU, ul ) + 2£9'111 (ou, u,., U2)

+ 32l'112(bu, Un UI) + 32l"12(OU, U" u,.)

(97)

(98)
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bpJ = - d,.bp; - abA~ bp;' - ~a3 A~ bp;"

+ a)., [29" III (bu, u;., u,) + 62l' 1111 (bu, Un u~, u,) + 3i?l' 1I,(bu, u;., U,)]

+ b)., [29" I II (bu, u;., ud + 6.'ii' I1II (bu, Un u;, ul )]

+ dA·'ii' I I (bu, u;.) +2i?l"11 (bu, U" u;.) + 3i?l"12(bu, u~, uJ]

+~(aA,)'[2i?l'111 (bu, u;', UI) +6.'ii"111 (bu, U" u;', u,) + 6i?l'1 dbu, UI, u;)]

+abA~ [2l' II (bu, u~) + 29"1, (bu, u;.) + 2.'ii' III (bu, u" u;')

+ 6i?l'II' (bu, U" u;.) + 39' 112 (bu, U~, U,.)]

+~(aAJ' [i?l' II (bu, U;:') + 6i?l' III (bu, U;, U~) + 22l' III (bu, U" U;,,)

+ 189" I1I1 (bu, U,., U;., U;) + 3i?l'112 (bu, U;:', UJ + 62l' 13 (bu, U;)]

+9'11 (bu, U3) + 2i?l'111 (bu, Ul , U2) + 22l'111 (bu, u" U3)

+ 69'1111 (bu, U" ul , u2 ) +3i?l'112(bu, u3 , uJ +i?l'13 (bu, UI) (99)

After introduction of:

bp,. = i?l', (bu) +i?l'11 (bu, u,.) +i?l'12 (bu, uJ +i?l'I] (bu, u,.)

bp;. = .'ii' II (bu, u;) + 2i?l' 111 (bu, u,., u;.) + 3i?l' "' (bu, u;, u,)

bp;' = i?l' II (bu, u;) + 2i?l' 12 (bu, u;.) + 29"111 (bu, u,., u~)

+ 62l' 112 (bu, u,., u;.) + 32l'1 dbu, u~, uJ

bp;" = .'ii' II (bu, u;:') + 69" III (bu, u~, u;:) + 2i?l' I I I (bu, u,., u;")

+ 62l' 13 (bu, U;.) + 18.'ii'111I (bu, u" U;, U;) + 3i?l' 112 (bu, Un U;")

the expressions for bp" bp, and bp] are reduced to (22).

APPENDIX D

(100)

Modified principle of virtual displacements and its derivatives at bifurcation
The modified principle of virtual displacements and its derivatives up to order three at the point of bifurcation,

i.e. at A = J.n are used to eliminate terms in the buckling and postbuckling problems.

D.l. Modified principle of virtual displacements.

D.2. First derivative.

(101)

o= 0';. be,. +0',' be; - bB, - A,.bB;. - C; . bl'{ -I'{; . bC, -I'{, . bC;.

D.3. Second derivative.

(102)

D.4. Third derivative.

o= 30';:' be;. + 30'; . b(+ 0',.. b(' +0':" be, - 3bB;' - A,bB;:'

-C;:'·bl'{-31'{;.·bC;'-31'{;'·bC;-I'{;"-bC,-I'{, . be;" (104)


